

 Navigation

 	
 index

 	
 next |

 	pipobot 1.0 documentation

Welcome to Pipobot’s documentation!

Documentation

Installation/Configuration

	1. Presentation

	2. Requirements

	3. Configuration
	3.1. Config section

	3.2. Database section
	3.2.1. SQLite configuration

	3.2.2. MySQL or PostgreSQL configuration

	3.3. Room section

	3.4. Group section

	3.5. Module-config section

	3.6. Testing section

	4. Invocation
	4.1. General command-line options

	4.2. Check-modules mode

	4.3. Unit-test mode

	4.4. Script mode

	4.5. Interactive mode

Modules API

	1. Architecture of a module
	1.1. Types of modules
	1.1.1. SyncModule

	1.1.2. MultiSyncModule

	1.1.3. AsyncModule

	1.1.4. ListenModule

	1.1.5. PresenceModule

	1.2. What they can return
	1.2.1. A string

	1.2.2. A list of strings

	1.2.3. A dictionary

	1.2.4. Nothing, None or “”

	1.3. Using configuration parameters

	2. Specific description of modules
	2.1. SyncModule
	2.1.1. Definition of module

	2.1.2. Writing handlers

	2.2. MultiSyncModule

	2.3. AsyncModule

	2.4. ListenModule

	2.5. PresenceModule

	3. Some internal modules
	3.1. Help Module
	3.1.1. Description format

	3.2. User Monitoring Module

	4. High-Level Modules
	4.1. FortuneModule

	4.2. NotifyModule

Writing unit-test

	1. Unit Tests
	1.1. Write a ModuleTest class

	1.2. Run your tests

Internationalisation and Localisation

	1. Internationalisation

	2. Translation handling
	2.1. New language

	2.2. Update an existing language

Code documentation

	1. Pipobot Package
	1.1. config Module

	1.2. bot Module

	1.3. bot_jabber Module

	1.4. bot_test Module

	1.5. bot_twisted Module

	1.6. Subpackages
	1.6.1. lib Package

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, pipo™.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pipobot 1.0 documentation

1. Presentation

2. Requirements

3. Configuration

Pipobot configuration is centralized in a single yaml file. In this file you will configure global parameters, select rooms
the bot will join, choose modules to use and configure them.
An example of such file is distributed with pipobot under the name of pipobot.conf.yml. You can find in it a full example of
configuration and can refer to it for syntax questions.
In this documentation we will develop parameters you can use and what they mean.

3.1. Config section

In this section you will have to provide general parameters for pipobot, eg parameters independent of rooms and modules.
Here is a list of parameters you can use:

	logpath: a relative or absolute path to a log file for pipobot

	xmpp_logpath: a relative or absolute path to log all debug related to XMPP communication. This will only be useful
in debug mode otherwise nothing will be logged (see General command-line options).

	force_ipv4: the bot will try to connect to the XMPP server in IPv6 (if a DNS record exists) if this boolean is not provided.

	lang: the language the application will use

	modules_path: a list of directories (relative or absolute) where the bot will try to find modules.

3.2. Database section

Configuration of the database which will be used by the bot.
Supported engines are: MySQL, PostgreSQL, SQLite, with their respecting configuration.

3.2.1. SQLite configuration

These parameters are required with this engine:

	engine: must be sqlite

	src: a relative or absolute path to a file where the database will be stored

3.2.2. MySQL or PostgreSQL configuration

For those engines here are the required parameters:

	engine: mysql or postgresql

	user: username to access the database

	password: password to access the database

	host: the server where the database is hosted (can be hostname or IP)

	name: the name of the database on the server

3.3. Room section

A room is a reference to an XMPP MUC that the bot will join.
It requires these parameters:

	chat: the MUC it will join (room@domain.tld).

	address: the address of the XMPP server (optional, default is extracted from the JID of the bot).

	port: the port of the XMPP server (optional, default is 5222).

	login: the JID used to authenticate to an XMPP server.

	passwd: the password used for the authentication.

	resource: the resource of the bot

	nick: the nickname of the bot in the MUC

	modules: a list of modules or groups to load for this room. Groups must be prefixed with an underscore.

3.4. Group section

A group is a list of modules we create that can be referenced in a room configuration (see the Room section above).
example:

	groups:

	
	group1:

	
	module1

	module2

	group2:

	
	module1

	module3

Then in the modules parameter of a room can add _group1 or _group2.

3.5. Module-config section

In the module_config section you will define modules specific configuration.
You can refer to the documentation of these modules to determine how to configure them, or if there is no such documentation
to messages given by the bot when it is started: it will inform you that some configuration parameters are missing, or what
default parameters are used instead.

Modules configuration are defined this way:

	module_config:

	module_name:

param1: a single value

	param2:

	
	a list

	of items

	param3:

	key: value

3.6. Testing section

The testing section is what will define which parameters and which modules the bot will use when started in testing modes
(see Unit-test mode).
You will need to provide these parameters:

	fake_nick: a nickname for the bot.

	fake_chan: a fake chan name (like XMPP MUC name).

	modules: a list of modules, just like in a real room.

4. Invocation

	pipobot can be started in serveral modes:

	
	XMPP mode : this is the principal mode for the bot : it will connect to a Jabber MUC and start listening for commands.

	Testing modes : they do not require an XMPP server : they are provided in order to easily test modules and bot functionalities.

4.1. General command-line options

When you start the bot in XMPP mode, you can use these options (use pipobot -h to retrieve them):

--version show program's version number and exit
-h, --help show this help message and exit
-q, --quiet Log and print only critical information
-d, --debug Log and print debug messages
-b, --background Run in background, with reduced privileges
--pid=PID_FILE Specify a PID file (only used in background mode)

You can also always specify a configuration file (default being /etc/pipobot.conf.yml):

pipobot /path/to/alternative/config

4.2. Check-modules mode

In this mode the bot will only check the configuration file, check all modules and verify that
you provided all required configuration parameters.

To use this mode use:

--check-modules Checks if modules' configuration is correct

4.3. Unit-test mode

In this mode, unit test modules will be used and started to detect errors.
It will use the testing section of the configuration file (see Testing section).

If you want to learn more about unit test, you can refer to Unit Tests.

To use this mode use:

--unit-test Run unit test defined in the config file

Example:

pipobot --unit-test

test_todo_add (todo.TodoAdd)
!todo add ... ok
test_todo_remove (todo.TodoRemove)
!todo remove ... ok
test_search (todo.TodoSearch)
!todo search ... ok

--
Ran 3 tests in 1.054s

OK

4.4. Script mode

This mode allows you to start the bot with a pre-defined list of commands.
Commands are separated with a ;.
It will generate their outputs and display them to you.
Example:

pipobot --script=":help;http://www.google.fr;:todo list all"

--> :help
<== I can execute:
-todo
--> http://www.google.fr
<== [Lien] Titre : Google
--> :todo list all
<== TODO-list vide

4.5. Interactive mode

This mode is provided to simulate an XMPP room locally.
You can start the bot in this mode with:

pipobot --interract

Loaded modules will be those defined in the testing section of the configuration file (see Testing section).
This will start a server waiting for fake XMPP clients to connect.
To create a new client you can use the pipobot-twisted provided application:

pipobot-twisted foo

This will create a new client called foo connecting to the fake server. You can then enter your commands
and see the result :

pipobot-twisted foo

Connected to server
Welcome !
*** foo has joined
!help
<foo> !help
<Pipo-test> I can execute:
-todo
!todo add liste un test
<foo> !todo add my_list a test
<Pipo-test> TODO added
!todo list
<foo> !todo list
<Pipo-test> All TODO-lists:
my_list
!todo list my_list
<foo> !todo list my_list
<Pipo-test> my_list :
1 - a test (by foo on 2012/03/10 at 16:20)

You can start multiple client to the room as long as they have different nicknames.

 Copyright 2012, pipo™.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pipobot 1.0 documentation

1. Architecture of a module

To create a new module for pipobot you have to write some python classes
which are subclasses of pre-defined type of modules.
See below for the description of all different modules.
A classic structure of a module (here date) is :

modules/date/
 __init__.py
 cmd_date.py

cmd_date.py will contain the CmdDate class defining the command.
__init__.py will just have to contain ‘from cmd_date import CmdDate’ so
importing modules.date will result to the import of the command class.
You can add as many cmd_[name].py as your module requires commands. You
just have to import them all in __init__.py.

1.1. Types of modules

There are several classes of modules, depending on what you are trying to achieve.

1.1.1. SyncModule

A SyncModule is a module that can be called explicitly by a user
(Sync stands for Synchronous). It can be used in a room like this :

<user> !date
<bot> Today is `insert the date of the day here !`

For more details, see SyncModule.

1.1.2. MultiSyncModule

A MultiSyncModule is very similar to a SyncModule, except that one MultiSyncModule
can handle several commands in it.
This is quite useful when commands are very simple, and does not require python code to
be handled.

For more details, see MultiSyncModule.

1.1.3. AsyncModule

An AsyncModule is a module which is not related to anything said in the room.
For instance, it could be a module announcing the hour every hour, or analysing mails
from a mail server and announcing new messages in the room.

For more details, see AsyncModule.

1.1.4. ListenModule

A ListenModule is a module where the bot reacts to something that has been
said in the room, but without an explicit call of a command, as in :

<user> Here is an awesome link : http://pipobot.xouillet.info !
<bot> [Lien] Titre : Forge xouillet

Every message in a room can be analysed by the bot, and he can react if the message
matches some criteria (contains a URL for instance).

For more details, see ListenModule.

1.1.5. PresenceModule

A PresenceModule reacts to every presence message in a room, for instance joins and leaves
of users.
For instance:

*** user has joined the room
<bot> user: welcome to the room !!

For more details, see PresenceModule, or the User Monitoring Module which is a PresenceModule.

1.2. What they can return

1.2.1. A string

If a module returns a string, the bot will simply say it in the room.

1.2.2. A list of strings

If a module returns a list of string, the bot will say each element of
the list one after the other.
Example:

def some_function(self, sender, message):
 return ["msg1", "msg2", "msg3"]

will result to:

<bot> msg1
<bot> msg2
<bot> msg3

1.2.3. A dictionary

Thanks to XEP-0071 [http://xmpp.org/extensions/xep-0071.html], XMPP protocols allows
to send XHTML messages for clients that support it.
If you want your module to send XHTML messages, you can make it return a dictionary like :

return {"text" : "*Message for clients which don't support XHTML*",
 "xhtml" : "Message for clients which do support XHTML"
 }

Some clients do not handle monospace fonts, so if you want to had some presentation in your messages
(tabulars for instance) they will not render correctly. If those clients support XHTML messages, you
can create an XHTML message that will do it :

raw_msg = "| Some | tabular |\n"
raw_msg += "| requiring | monospace |"
return {"text" : raw_msg,
 "monospace" : True}

The following XHTML message will be automatically created and sent :

<p>

 | Some | tabular |

 | requiring | monospace |

</p>

Finally, dictionaries can be used to send private message to several users.
Example:

return { "user1" : { "text": "Message for user1",
 "monospace": True },
 "user2" : { "text" : "raw message for user2",
 "xhtml" : "<p> an XHTML message for user2 </p>"}
 }

1.2.4. Nothing, None or “”

If a module has no return statement, returns None or “”, then
the bot will simply not say anything.

1.3. Using configuration parameters

Some modules may require configuration parameters that will be provided
by the pipobot‘s main configuration file.

pipobot includes a syntax to define such parameters, and will automatically:

	check if required parameters are present

	replace optional parameters by a default value

	check if provided parameters are correct (type verification)

To add parameters to a module you must provide a _config attribute to the module
class, listing them.
For example if we want a module to parse the several sample of configuration:

modules_config:
 my_module:
 param1: True
 param2:
 - foo
 - bar
 param3:
 key1: val1
 key2: val2
 # OPTIONAL
 param4: "somestring"

In the corresponding module class we will add:

class MyModule(SyncModule):
 _config = (("param1", bool, None), ("param2", list, None),
 ("param2", dict, None), ("param4", string, "somestring))

Then in the code of the module we will be able to access to these parameters with self.param1, self.param2...

	Possible types of parameters are defined by the yaml language:

	
	a boolean

	a string

	an int

	a list

	a dictionary

Each element of the _config array is a parameter constructed with (name, type, default_value), None in default_value meaning
that the parameter is not optional.

2. Specific description of modules

2.1. SyncModule

2.1.1. Definition of module

A SyncModule is a module that can be called explicitly by a user
(Sync stands for Synchronous). It can be used in a room like this :

<user> !date
<bot> Today is `insert the date of the day here !`

	Some parameters must be specified to define a command :

	
	name : its name (date in the previous example)

	desc : a description of the module which will be used by the help module (see Description format.)

2.1.2. Writing handlers

SyncModule mother class implements a parsing method for commands.
For instance a command can take several subcommands as in this example:

<user> !todo
<bot> This is a command to handle TODO-list
<user> !todo list
<bot> Here is the list of all TODO : …
<user> !todo add some_list I have TODO this !
<bot> The todo 'I have TODO this !' has been successfully added to 'some_list'

list and add are subcommands for the main todo command.
To each subcommand you want to define, you have to write a handler
to the module class.

A handler is a Python method with this signature:

def some_name(self, sender, message):

	The parameters are :

	
	sender is the name of the user who sent the command (user in the previous example).

	message is what the user sent, without the command name and the subcommand name.

For instance in:

<user> !todo add some_list I have TODO this !

sender will be user and message will be some_list I have TODO this !.

In order to define a subcommand, you have to add a descriptor to the method you write.
It can be @defaultcmd or @answercmd("subcommand1", "subcommand2").
For instance the skeleton of the todo module will be:

from lib.modules import SyncModule, answercmd, defaultcmd

class CmdTodo(SyncModule):
 def __init__(self, bot):
 desc = "A TODO module"
 command_name = "todo"
 SyncModule.__init__(self, bot, desc, command_name)

 @answercmd("add")
 def add(self, sender, args):
 #what to do with !todo add some other args
 pass

 @answercmd("list")
 def list(self, sender, args):
 #what to do with !todo list some other args
 pass

 @answercmd("rm", "del")
 def rm(self, sender, args):
 #what to do with !todo rm or !todo del some other args
 pass

 @defaultcmd
 def default(self, sender, message):
 #In any other case this will be called
 pass

The @defaultcmd decorator specify the method that will be called when no other method corresponds
to user’s input.
For instance in this example, all these calls will be handled by the default method:

!todo
!todo should RTFM
!todo don't know what i am doing

This behaviour is interesting if you want to handle errors yourself : any use of the command that is not conform
to the syntax defined by other decorators will be handled by the default method.

Finally you can use regular expressions in decorators to filter subcommands differently.
For instance we can re-write the todo module like this:

class CmdTodo(SyncModule):
 def __init__(self, bot):
 pass

 @answercmd("^$")
 def empty(self, sender, args):
 pass

 @answercmd("list"):
 def list(self, sender, args):
 pass

 @answercmd("add (?P<list_name>\S+) (?P<desc>.*)"=
 def add(self, sender, args):
 liste = args.group("list_name")
 desc = args.group("desc")

 @answercmd("(remove|delete) (?P<ids>(\d+,?)+)")
 def remove(self, sender, args):
 ids = args.group("ids").split(",")

As you can see in this example, with this syntax you can do a lot of work to filter commands directly in the
decorator.
In the previous example, a call like :

!todo add somelist a new todo to add

will be handled by the add method, and a call like :

!todo remove 1,2,3

will be handled by the remove method.

Empty call like :

!todo

will be handled by the empty method.

Finally any other syntax will raise an error so the bot will return a message recommending to read
the manual of the command since no @defaultcmd is provided.

You can use in a given module regular expression-based decorators and “classic” decorators.
Just be careful of the behaviour if for instance some regular expressions are to permissive.

WARNING: Be careful not to use too permissive pattern in @answercmd decorator.
For instance if you use this set of decorators :

@anwsercmd("add (?P<list_name>\S+) (?P<desc>.*)")
@answercmd("search (?P<query>.*)")
@answercmd("(remove|delete) (?P<ids>(\d+,?)+)")
@answercmd("")

ANY call to the corresponding command will be caught by the last one since an empty regular
expression matches a lot of things !!
If you want to define the empty subcommand, just use @answercmd("^$").

2.2. MultiSyncModule

A MultiSyncModule is similar to a SyncModule but it contains several commands which will be handled
by the same module. You initialize it with a dictionary command_name → command_description.
Then you will provide some handling method with the same syntax as you would in a SyncModule.

2.3. AsyncModule

An AsyncModule is a module executing a task automatically every n seconds and send a message in a room
with the result of this task. Its action is not related to anything said in the room.

Example:

<bot> You have received a new mail !!!

Additionally to the name and the description of the module (see Description format) you have to provide a
delay which means : every delay seconds the action will be executed.
Then you write an action function with no argument :

def action(self):
 #some_work
 self.bot.say("The message we send to the room")

action is the method that will be called every delay seconds.

2.4. ListenModule

An ListenModule is a module executing a task which depend on something that has been said in the room.
But as opposed to SyncModule it is not explicitly called with a !command syntax.

For instance, it can be used to analyse messages with URL :

<user> hey, check this amazing link : http://www.nojhan.net/geekscottes/strips/geekscottes_103.png
<bot> [Lien] Type: image/png, Taille : 68270 octets

The parameters required for a ListenModule are:

	its name

	a description (see Description format)

The answer handler function will have this signature:

def answer(self, sender, message):
 #some work on the message
 if (re.findall(SOME_URL_REGEXP, message)):
 #handle url
 return "[Lien] Type: %s, Taille : %s octets" % (ctype, clength))
 else:
 return None

Then if the message contains an URL you can extract it, work on it and return some information about it.
If it does not, you return None so the bot will not say anything in the room.

2.5. PresenceModule

A PresenceModule is handling XMPP Presence stanza, for instance in a MUC : an user joins/leaves the room.
The handling method is named do_answer with this signature:

def do_answer(self, message):
 # some work on the message
 if join_message:
 self.bot.say("Hello %s !" % username)

Which will result in:

*** user has joined
<bot> Hello user !!!

3. Some internal modules

3.1. Help Module

3.1.1. Description format

3.2. User Monitoring Module

4. High-Level Modules

These modules are derived from general module presented here : SyncModule.
They exist to simplify writing some modules executing similar tasks.

4.1. FortuneModule

This module is a SyncModule with some pre-defined functions.
It can be used in this context : you have a website presenting some quote/fortunes and you want
to write a module which, when called, will parse quotes from the website and return it.
In addition to all SyncModule parameters, it has two more attributes you have to set :
url_random and url_indexed.
It provides commands with the syntax:

!cmd
!cmd some_number

In the first case, the module will use the url_random, and parse it.
In the second case, the module will use the url_indexed, insert in it some_number, and get the
corresponding page.
All you need to do in your module is to override the extract_data, method using with your own, using
the soup parameter which is a BeautifulSoup object created with the content of the page.

You can see some example of such FortuneModule in the bot (bashfr, vdm, chuck, …).

4.2. NotifyModule

This module is the combination of a SyncModule and an AsyncModule.
You have to define a do_action method that will be called every n seconds.
In a NotifyModule, the action method (see AsyncModule for more details) is already defined
and will check if the module has been muted or not. If it has not, the method do_action that you are
supposed to write will be called.
The NotifyModule will provide a mute/unmute method that will disable/enable the notifications.
You can add to it as many @answercmd as you need to, like in any other SyncModule.

The reminder module is an example of such module.

 Copyright 2012, pipo™.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pipobot 1.0 documentation

1. Unit Tests

Unit tests in pipobot module are based on the python unittest library.
On top of that library, a ModuleTest class has been written to provide some bot-related
functionalities.

For more information about the ModuleTest class see module_test Module.

1.1. Write a ModuleTest class

Some tools are provided to you to write a unit test.
First you can use the bot_answer method that will take a string defining what is
the message that must be analysed by the bot, and retuning its answer.
Then you can use unittest functionalities to check if the result is correct.
Each test is a method that must be prefixed with test_
Here is a first simple example:

class BandMTest(ModuleTest):
 def test_current(self):
 """ !b&m : check current song """
 bot_rep = self.bot_answer("!b&m")
 self.assertRegexpMatches(bot_rep, "Titre en cours : (.*)")

 def test_lyrics(self):
 """ !b&m lyrics """
 self.bot_answer("!b&m lyrics")

This ModuleTest contains 2 unit test : the first is asking the bot !b&m and expects in return
a result matching a regular expression.
The second test is asking !b&m lyrics and has no test on the output : it will only fail an exception
is raised.

You can also create more complicated example : for instance to test modules that need to access
to database elements :

class TodoRemove(ModuleTest):
 def setUp(self):
 """ Creates 3 random todo we add manually to the database """
 self.todos = []
 todos = {string_gen(8): string_gen(50),
 string_gen(8): string_gen(50),
 string_gen(8): string_gen(50)}
 for list_name, todo in todos.iteritems():
 todo = Todo(list_name, todo, "sender", time.time())
 self.bot.session.add(todo)
 self.bot.session.commit()
 self.todos.append(todo)

 def test_todo_remove(self):
 """ !todo remove """
 bot_rep = self.bot_answer("!todo remove %s" % ",".join([str(elt.id) for elt in self.todos]))
 expected = "\n".join(["%s a été supprimé" % todo for todo in self.todos])
 self.assertEqual(bot_rep, expected)

 def tearDown(self):
 """ In case of failure, we manually remove the todo we added """
 for todo in self.todos:
 remove = self.bot.session.query(Todo).filter(Todo.id == todo.id).first()
 if remove is not None:
 self.bot.session.delete(remove)
 self.bot.session.commit()

In this class, we are only testing one command with the method test_todo_remove.
The setUp and tearDown methods are defined in the python unittest API :

	setUp is executed before the actual test

	tearDown is executed after the test

In the test we want to try the deletion of todo, with the ”!todo remove id1,id2,id3” command.
So in the setUp we manually create 3 todos with random values. Then in the test we try to remove them.
The tearDown is usefull in case of the test fails : it manually removes todo added in the setUp, so
we are sure that even if the test fails we will not have any generated todo remaining in the database.

1.2. Run your tests

To ask the bot to run the test you have just created, use the –unit-test option of pipobot,
as described here: Unit-test mode.

 Copyright 2012, pipo™.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pipobot 1.0 documentation

1. Internationalisation

Pipobot uses the gettext module for internationalisation purposes. You can
use the following functions to render your module translatable.

	
gettext(string)

	
_(string)

	These functions take a string in argument and return the translated string.
Sample usage:

self.bot.say(_("Hello, World!"))

When one of these two functions are used, the string passed in parameter
will be automatically proposed for translation.

If you want to translate a string format, pass only the format to the
function:

self.bot.say(_("Hello, %s") % name)

If you have more than one format parameter, it is better to name them
explicitely because the translator may want to reverse the order:

self.bot.say(_("Today is %(month)s, %(day)d") % {'month': month,
 'day': day})

	
ngettext(singular, plural, n)

	ngettext is used to translate expressions which can be pluralised.
Sample usage:

self.bot.say(ngettext("You have %d message", "You have %d messages",
 message_count) % message_count)

Always use ngettext instead of if message_count == 1: … because
some languages have pluralization rules different from English (for
instance, in French, 0 is singular, not plural, and in Polish, there are
5 different plural forms depending on the item count)

	
N_(string)

	N_ is a no-op. It just returns the string passed in parameter. It is
used to mark strings which should be translatable but cannot be directly
translated because the translation system is not already active (so _,
gettext and ngettext are unavailable). That may be the case for
strings defined as constants in a Python module or as a class attribute.

For instance:

HELLO_MESSAGE = N_("Hello, World!")
[…]
def say_hello():
 print _(HELLO_MESSAGE)

You do not need to import anything to use these functions: they are always
defined at the global level.

2. Translation handling

Pipobot uses the babel module to handle translations. If you intend to add
new translations or update existing ones, you will need to install this module.

2.1. New language

To translate Pipobot to a new language (for instance zz_ZZ, use the
following commands (from the directory containing the setup.py script):

python setup.py extract_messages # Extract the messages from Pipobot’s sources
python setup.py init_catalog -l zz_ZZ # Create a translation catalog for the specified language

You can now edit pipobot/i18n/zz_ZZ/LC_MESSAGES/pipobot.po (with a standard
text editor or POEdit, for instance) and translate every message. When done,
run:

python setup.py compile_catalog # Compile the translation catalog

The translation can now be used by Pipobot.

2.2. Update an existing language

To update an existing translation catalog in order to take into account the
changes in Pipobot’s source code, run the following commands (replace zz_ZZ
with the name of the catalog you want to update):

python setup.py extract_messages # Extract the messages from Pipobot’s sources
python setup.py update_catalog -l zz_ZZ # Update the translation catalog for the specified language

You can now edit pipobot/i18n/zz_ZZ/LC_MESSAGES/pipobot.po (with a standard
text editor or POEdit, for instance) and translate every message. When done,
run:

python setup.py compile_catalog # Compile the translation catalog

The translation can now be used by Pipobot.

 Copyright 2012, pipo™.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pipobot 1.0 documentation

1. Pipobot Package

1.1. config Module

1.2. bot Module

1.3. bot_jabber Module

1.4. bot_test Module

1.5. bot_twisted Module

1.6. Subpackages

	1.6.1. lib Package
	1.6.1.1. bdd Module

	1.6.1.2. exceptions Module

	1.6.1.3. modules Module

	1.6.1.4. abstract_modules Module

	1.6.1.5. parsedates Module

	1.6.1.6. user Module

	1.6.1.7. known_users Module

	1.6.1.8. loader Module

	1.6.1.9. utils Module

	1.6.1.10. module_test Module

 Copyright 2012, pipo™.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	pipobot 1.0 documentation

 	1. Pipobot Package

1.6.1. lib Package

1.6.1.1. bdd Module

1.6.1.2. exceptions [http://docs.python.org/library/exceptions.html#module-exceptions] Module

1.6.1.3. modules Module

1.6.1.4. abstract_modules Module

1.6.1.5. parsedates Module

1.6.1.6. user [http://docs.python.org/library/user.html#module-user] Module

1.6.1.7. known_users Module

1.6.1.8. loader Module

1.6.1.9. utils Module

1.6.1.10. module_test Module

 Copyright 2012, pipo™.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	pipobot 1.0 documentation

Index

 _
 | G
 | N

_

 	

 	_() (built-in function)

G

 	

 	gettext() (built-in function)

N

 	

 	N_() (built-in function)

 	

 	ngettext() (built-in function)

 Copyright 2012, pipo™.
 Created using Sphinx 1.3.1.

 _static/minus.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/plus.png

_static/up.png

_static/down.png

search.html

 Navigation

 		
 index

 		pipobot 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, pipo™.
 Created using Sphinx 1.3.1.

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

